

Lecture 18. Linear transformations of vector spaces

Def A function $T: V \rightarrow W$ between two vector spaces V and W is called a linear transformation if it has the following properties:

(i) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for any $\vec{u}, \vec{v} \in V$

(ii) $T(c\vec{v}) = cT(\vec{v})$ for any $c \in \mathbb{R}, \vec{v} \in V$

Note (1) We can use bases of V and W to express T by a matrix multiplication.

e.g. $V = \mathbb{P}_2$, $W = \mathbb{R}^3$ with standard bases

$\Rightarrow T: \mathbb{P}_2 \rightarrow \mathbb{R}^3$ has standard matrix with columns
 $T(1), T(t), T(t^2)$.

(2) Once T is written as a multiplication by a matrix A , we can use RREF(A) to study various properties of T as follows:

- T is injective \Leftrightarrow RREF(A) has a leading 1 in every column
- T is surjective \Leftrightarrow RREF(A) has a leading 1 in every row
- T is invertible \Leftrightarrow RREF(A) = I

(3) In Math 313, we will mostly consider linear transformations on \mathbb{R}^n or \mathbb{P}_n .

(4) We have $T(\vec{0}) = \vec{0}$

Ex Determine whether each function is a linear transformation.

(1) $T_1: \mathbb{R}^2 \rightarrow \mathbb{P}_2$ given by

$$T_1(\vec{x}) = (x_1 - 2x_2) + 3x_1t + 2x_2t^2$$

Sol $[T_1(\vec{x})] = \begin{bmatrix} x_1 - 2x_2 \\ 3x_1 \\ 2x_2 \end{bmatrix}$ linear coordinates with no constant terms

Hence T_1 is a linear transformation

(2) $T_2: \mathbb{R}^2 \rightarrow \mathbb{P}_2$ given by

$$T_2(\vec{x}) = (x_1^2 - 2x_2) + 3x_1t + 2x_2^3t^2$$

Sol $[T_2(\vec{x})] = \begin{bmatrix} x_1^2 - 2x_2 \\ 3x_1 \\ 2x_2^3 \end{bmatrix}$ nonlinear terms in coordinates

Hence T_2 is not a linear transformation

(3) $T_3: \mathbb{P}_3 \rightarrow \mathbb{R}^2$ given by

$$T_3(p(t)) = \begin{bmatrix} p(2) \\ p(0) \end{bmatrix}.$$

Sol For polynomials $p(t), q(t) \in \mathbb{P}_3$, we have

$$T_3(p(t) + q(t)) = \begin{bmatrix} p(2) + q(2) \\ p(0) + q(0) \end{bmatrix} = \begin{bmatrix} p(2) \\ p(0) \end{bmatrix} + \begin{bmatrix} q(2) \\ q(0) \end{bmatrix} = T_3(p(t)) + T_3(q(t))$$

For a polynomial $p(t) \in \mathbb{P}_3$ and a scalar $c \in \mathbb{R}$, we have

$$T_3(cp(t)) = \begin{bmatrix} cp(2) \\ cp(0) \end{bmatrix} = c \begin{bmatrix} p(2) \\ p(0) \end{bmatrix} = c T_3(p(t))$$

Hence T_3 is a linear transformation

(4) $T_4: \mathbb{P}_2 \longrightarrow \mathbb{P}_5$ given by

$$T_4(p(t)) = (t^3 - 2)p(t).$$

Sol For polynomials $p(t), q(t) \in \mathbb{P}_2$, we have

$$\begin{aligned} T_4(p(t) + q(t)) &= (t^3 - 2)(p(t) + q(t)) \\ &= (t^3 - 2)p(t) + (t^3 - 2)q(t) = T_4(p(t)) + T_4(q(t)) \end{aligned}$$

For a polynomial $p(t) \in \mathbb{P}_2$ and a scalar $c \in \mathbb{R}$, we have

$$T_4(cp(t)) = (t^3 - 2) \cdot cp(t) = c(t^3 - 2)p(t) = cT_4(p(t))$$

Hence T_4 is a linear transformation

(5) $T_5: \mathbb{P}_2 \longrightarrow \mathbb{P}_5$ given by

$$T_5(p(t)) = t p(t)^2.$$

Sol $T_5(t) = t \cdot t^2 = t^3$ and $T_5(2t) = t \cdot (2t)^2 = 4t^3 \Rightarrow T_5(2t) \neq 2T_5(t)$

Hence T_5 is not a linear transformation

Note The main issue is the nonlinear term $p(t)^2$ for the input $p(t)$.

(6) $T_6: \mathbb{P}_4 \longrightarrow \mathbb{P}_3$ given by

$$T_6(p(t)) = 3p'(t) + 2p''(t)$$

Sol For polynomials $p(t), q(t) \in \mathbb{P}_4$, we have

$$\begin{aligned} T_6(p(t) + q(t)) &= 3(p(t) + q(t))' + 2(p(t) + q(t))'' \\ &= 3p'(t) + 3q'(t) + 2p''(t) + 2q''(t) \\ &= (3p'(t) + 2p''(t)) + (3q'(t) + 2q''(t)) = T_6(p(t)) + T_6(q(t)) \end{aligned}$$

For a polynomial $p(t) \in \mathbb{P}_2$ and a scalar $c \in \mathbb{R}$, we have

$$\begin{aligned} T_6(cp(t)) &= 3(cp(t))' + 2(cp(t))'' = 3cp'(t) + 2cp''(t) \\ &= c(3p'(t) + 2p''(t)) = cT_6(p(t)) \end{aligned}$$

Hence T_6 is a linear transformation

Ex Consider the linear transformation $T: \mathbb{P}_2 \rightarrow \mathbb{R}^2$ given by

$$T(p(t)) = \begin{bmatrix} p(1) \\ p'(2) \end{bmatrix}.$$

(1) Find the standard matrix A of T .

Sol A has columns $T(1), T(t), T(t^2)$.

$$p(t) = 1: p(1) = 1, \underbrace{p'(2) = 0}_{p'(t) = (1)' = 0} \Rightarrow T(1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$p(t) = t: p(1) = 1, \underbrace{p'(2) = 1}_{p'(t) = (t)' = 1} \Rightarrow T(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$p(t) = t^2: p(1) = 1, \underbrace{p'(2) = 4}_{p'(t) = (t^2)' = 2t} \Rightarrow T(t^2) = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Hence the standard matrix is $A = \boxed{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \end{bmatrix}}$

(2) Determine whether T is injective

Sol $\text{RREF}(A) = \boxed{\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 4 \end{bmatrix}}$ has no leading 1's in column 3

$\Rightarrow T$ is not injective

(3) Determine whether T is surjective

Sol $\text{RREF}(A)$ has a leading 1 in every row

$\Rightarrow T$ is surjective